Causal History, Statistical Relevance, and Explanatory Power

This abstract has open access
Abstract
In discussions of the power of causal explanations, one often finds a commitment to two premises. The first is that, all else being equal, a causal explanation is powerful to the extent that it cites the full causal history of why the effect occurred. The second is that, all else being equal, causal explanations are powerful to the extent that the occurrence of a cause allows us to predict the occurrence of its effect. This article proves a representation theorem showing that there is a unique family of functions measuring a causal explanation's power that satisfies these two premises.
Abstract ID :
PSA2022390
Submission Type
Topic 1

Associated Sessions

Speaker
,
Princeton University

Abstracts With Same Type

Abstract ID
Abstract Title
Abstract Topic
Submission Type
Primary Author
PSA2022514
Philosophy of Biology - ecology
Contributed Papers
Dr. Katie Morrow
PSA2022405
Philosophy of Cognitive Science
Contributed Papers
Vincenzo Crupi
PSA2022481
Confirmation and Evidence
Contributed Papers
Dr. Matthew Joss
PSA2022440
Confirmation and Evidence
Contributed Papers
Mr. Adrià Segarra
PSA2022410
Explanation
Contributed Papers
Ms. Haomiao Yu
PSA2022504
Formal Epistemology
Contributed Papers
Dr. Veronica Vieland
PSA2022450
Decision Theory
Contributed Papers
Ms. Xin Hui Yong
PSA2022402
Formal Epistemology
Contributed Papers
Peter Lewis
140 visits